BlueGene/L Software Overview

Sid Chatterjee Manish Gupta Jose Moreira
IBM T. J. Watson Research Center

L=
e
®®@®

Qutline

A System software overview
e Operating system - Linux, HPK
e Compilers - Fortran95, C99, C++
e Math library - subset of ESSL
e Message passing - MP!
® File system
e Job scheduler
e System management, including control, bringup, and RAS

A In-depth look at some software components
e Single node compilation and performance issues - Sid Chatterjee

e Message passing support: design and performance issues - Bill Gropp,
Rusty Lusk, Jose Moreira

BG/L: Application Developer's View

compute node
- application volume

e Collection of compute nodes with fast network connections

e Compute nodes dedicated to running user application, and almost
nothing else - simple high performance kernel (HPK)

BG/L: Operating System Services

compute node
- application volume

|70 node
- operational surface

e |/0 nodes provide a more complete range of OS services, e.g., 170,
sockets, process launch and termination - run Linux

e Operationally, compute nodes are "invisible" - allows OS on compute
nodes to be simple, makes the machine more manageable

BG/L: Overall Operational View

compute node
- application volume
|70 node
- operational surface

service node
- control surface

e Service nodes have private ethernet connection to core BG/L
components

e System management services (e.g. heartbeating, monitoring errors)
largely transparent to application/system software

BG/L: Programming Models

- N compute nodes

Default mode of operation

e SPMD with message passing (MPI) among N compute processes
e One processor on each node dedicated to communication

e Foundation for other programming models, e.g., UPC, Charm++

Other Modes: Using Both CPUs for Computation

A Message passing between the two CPUs on a compute node
e use two MPI processes on each node, one bound to each processor
@ each processor on a node handles both computation and communication
e distributed memory semantics convenient on node w/o cache coherence

A Shared memory programming on compute node
e Can be selectively used for compute-bound parallel regions

e Need careful sequence of cache line flush, invalidate, and copy
operations to deal with lack of L1 cache coherence in hardware

e Alternatives:
= OpenMP pragma extension - compiler managed code generation
= Explicit multithreading - user has to manage coherence of caches

A Caveat - these modes may not lead to higher performance if
program is communication bound or memory bandwidth bound

High Performance Kernel

A Simple kernel for compute nodes

A Support for:

e multithreaded (fixed number of threads), single process execution

e simple memory management for a fixed size virtual memory space
= no demand paging
= no TLB misses - using large pages
= set attributes on pages to control cache behavior

e interaction with control system

@ |/0 through function shipping to 170 nodes

e debugging through ptrace client

A Same set of user-space services as Linux, including: libraries,
compilers, system programming interface (SPI)

LINux

A BG/L specific extensions to PPC 440 port
@ device drivers for ethernet, tree
e interrupt controller
e support for double FPU

A Enhancements
e smart device drivers for exploiting second CPU
e SMP mode without cache coherence
e support for variable-sized pages
e demand paging over network
® climinate unnecessary daemons
e reduce frequency of asynchronous events

BGLsim - System-level simulator (1)

A Program development based on complete system-level simulator for BG/L
® based on SimOS-like Mambo simulation framework from Austin Research Lab.
e complements our VHDL simulators (which are much slower)

A This simulator is architecturally accurate:
® executes the full instruction set of BG/L, including SIMD Floating Point Unit
e models all the devices, including Ethernet, torus, tree, lock box, etc
e supports development of system software and applications
e currently not performance aware: only counts instructions, not cycles
e we have simulated systems with up to 128 nodes (not a limitation)

A Efficient simulation that supports code development:
e 500,000 - 1,000,000 BG/L instructions/second on 1 GHz Pentium Il
® generates statistics like instruction counts, cache misses.

A We have used it to develop/test HPK, Linux, device drivers, networking, MPI,
compilers, FPU benchmarks

Node Compilers for BlueGene/L

A Support Fortran, C, C++

A Backend enhanced to support PPC440 and to target SIMD FPU on
nodes
e Finds parallel operations that match SIMD instructions
e Register allocator enhanced to handle register pairs
e [nstruction scheduling tuned to unit latencies

A Initial design of (2-way) SIMD FPU architecture was driven by key
workload kernels such as matrix-matrix product and FFT
e |dentified several mux combinations for SIMD operations not usually
seen on other SIMD ISA extensions (Intel SSE, PPC AltiVec), e.g.,
do=a+hb*c || ds=as-bs™* s
do=a+b.*c || ds=a;+ b, *cs

Message Passing

A Three layers of communication libraries:
e HAL - delivery of packets
e Message layer - delivery of arbitrary sized messages
e MPI - for end user application

A HAL and Message layer contain BG/L-specific code
e delivery of packets over torus and tree networks
e using second CPU on compute node as communication coprocessor
e can be used by applications, but are intended more for library developers

A MPI based on MPICHZ2 being developed by Argonne National Lab
@ builds upon Message layer

e need highly scalable implementation for tens of thousands of nodes -
consistent with MPICHZ2 design goals

e BG/L specific optimizations for exploiting tree and broadcasts on torus

File System: GPFS on PC Cluster

GPFS

I Server v RAID

IP Stack A
NFS Client Server
|/0-node
] i and
file server
network

RAID

Server

NFS file 1I/0 in BG/L

I/O node

Ethernet NFS Server

Compute node

Tools

A Debugger

e Preliminary discussions with Etnus to support TotalView debugger on
BG/L

e \We will provide ptrace debug client support on BG/L nodes.

A Performance tools

e Possibilities for visualization of messaging traffic are: Paravar (UPC
Barcelona), Vampir (PALLAS), PE Benchmarker (IBM)

e Performance counters data : PAPI

Control network

ETH chip
(IP address)

Core

Monitoring _
and Control Ethernet ETH chip

(IP address)

JTAG

System
(CMCY)

A

oroprietary

All control transactions are initiated by the
CMCS process

Extensive error checking and correcting /
recording mechanisms in each h/w
component - status checked periodically by
CMCS process, critical for fault isolation.

Each device under control is identified by (IP, device number)

Core Monitoring and Control System (CMCYS)

A IDEVICE layer:

e a transport layer for talking to devices over
IP

® sends/receives bit-vectors
A Action layer:
e implements device-specific semantic actions

e straightforward correspondence to
bit-vectors at iDEVICE layer

A Control layer: Action

e implements complex operations with
multiple steps

e E.g., IPL, power on, etc iDEVICE

Control

Overall System Management

A CMCS fits into the Cluster System Management (CSM) framework
as a Resource Manager

A CSM framework provides
e high availability services
® connectivity between components
@ monitoring services
e GUI for system administrator

A Extending with RAS database containing information about:
e machine topology (compute nodes and 1/0 nodes)
e P address of each ETH and devices attached to it
e state (assumed and/or measured) of each device
@ Dbitvectors for controlling devices
e event logs - information on errors

Fault Recovery

A Application-level checkpointing
e user controlled - application does self checkpointing
e application responsible for quiescing before checkpoint
e implementation in user level library
e restart is user-initiated
A System-initiated checkpointing
e will explore different levels of transparency

Job Scheduling

A Job scheduling strategies can significantly impact the utilization of
large computer systems

A Machines with toroidal topology, as opposed to all-to-all switch,
are particularly sensitive to job scheduling

A Based on IBM LoadLeveler product
e User submits jobs from the host (Front End node)
e Support for initiating parallel jobs on BG/L core based on MPICH2

A BG/L specific extensions
® Topology aware scheduling, including backfilling
e Task migration

Conclusions

A We are developing a BG/L system software stack with Linux-like
personality for user applications
e custom solution (HPK) on compute nodes for highest performance
e Linux solution on I/0O nodes for flexibility and functionality

A We will exploit both CPUs in the BG/L compute node

A Communication infrastructure is layered - supports MPI and the
development of new application-level communication libraries

A Simulator supports system software and application development

A Leveraging IBM product infrastructure on compilers, job
scheduling/management (LoadLeveler) and clustered systems
management (CSM)

